Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 906
Filtrar
1.
J Transl Med ; 21(1): 849, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007485

RESUMO

INTRODUCTION: In vitro or in vivo depletion of alloreactive T cells can facilitate haplo-identical hematopoietic stem cell transplantation (HSCT). Very satisfactory transplant outcomes were thus reported for TCRαß/CD19-depleted hematopoietic stem/progenitor cell (HSPC) grafts. The current semi-automatic manufacturing process on the CliniMACS Plus, although robust, still requires a significant amount of manual labor to be completed. Towards advancing and further facilitating large scale cell processing, a new TCRαß/CD19 depletion module combined with the previously described CD45RA depletion module (to serve as allo-reactivity attenuated donor lymphocyte infusion) was established on the CliniMACS Prodigy. METHODS: We evaluated six apheresis products from G-CSF-mobilized volunteer donors which were split automatically by the Prodigy, one portion each depleted of CD45RA+ or of TCRαß+ and CD19+ cells. We investigated critical quality attributes for both products. Products were assessed for recovery of HSPCs and mature subsets, as well as depletion efficiency of targeted cells using flow cytometry. Effects of apheresis and product age post 48 h storage at 2-6 °C as well as freeze-thawing on product viability and recovery of WBC and HPSCs were assessed by flow cytometry. RESULTS: Ten sequential automatic processes were completed with minimal hands-on time beyond tubing set installation. Depletion efficiency of CD45RA+ resp. TCRαß+ and CD19+ cells was equivalent to previous reports, achieving mean depletions of 4 log of targeted cells for both products. HSPC products retained TCRγδ+ and NK cells. 48 h storage of apheresis product was associated with the expected modest loss of HSPCs, but depletions remained efficient. Depleted products were stable until at least 72 h after apheresis with stem cell viabilities > 90%. Freeze-thawing resulted in loss of NK cells; post-thaw recovery of viable CD45+ and HSPCs was > 70% and in line with expectation. CONCLUSION: The closed, GMP-compatible process generates two separate medicinal products from the same mobilized apheresis product. The CD45RA-depleted products contained functional memory T cells, whereas the TCRαß/CD19-depleted products included HSPCs, TCRγδ+ and NK cells. Both products are predicted to be effectively depleted of GVH-reactivity while providing immunological surveillance, in support of haplo-identical HSCT.


Assuntos
Anemia , Remoção de Componentes Sanguíneos , Transplante de Células-Tronco Hematopoéticas , Humanos , Depleção Linfocítica/métodos , Remoção de Componentes Sanguíneos/métodos , Linfócitos T , Células-Tronco Hematopoéticas , Doadores de Tecidos , Receptores de Antígenos de Linfócitos T alfa-beta , Transplante de Células-Tronco Hematopoéticas/métodos
2.
Neurotherapeutics ; 20(6): 1707-1722, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37882961

RESUMO

Few studies have investigated sustained B-cell depletion after long-term intravenous (IV) anti-CD20 B-cell depleting therapy (BCDT) in multiple sclerosis (MS) with respect to strict and/or minimal disease activity. The main objective of this study was to investigate how sustained B-cell depletion after BCDT influences clinical and radiological stability as defined by "no evidence of disease activity" (NEDA-3) and "minimal evidence of disease activity" (MEDA) status in MS patients at 12 and 18 months. Furthermore, we assessed the frequency of serious adverse events (SAE), and the influence of prior lymphocytopenia-inducing treatment (LIT) on lymphocyte subset counts and gammaglobulins in MS patients receiving long-term BCDT. We performed a retrospective, prospectively collected, study in a cohort of 192 MS patients of all clinical phenotypes treated by BCDT between January 2014 and September 2021. Overall, 84.2% and 96.9% of patients attained NEDA-3 and MEDA status at 18 months, respectively. Sustained CD19+ depletion was observed in 85.8% of patients at 18 months. No significant difference was observed when comparing patients achieving either NEDA-3 or MEDA at 18 months and sustained B-cell depletion. Compared to baseline levels, IgM and IgG levels on BCDT significantly decreased at 6 months and 30 months, respectively. Patients receiving LIT prior to BCDT showed significant CD4+ lymphocytopenia and lower IgG levels compared to non-LIT patients. Grade 3 or above SAEs were rare. As nearly all patients achieved MEDA at 18 months, we suggest tailoring IV BCDT after 18 months given the occurrence of lymphocytopenia, hypogammaglobulinemia, and SAE after this time point.


Assuntos
Linfopenia , Esclerose Múltipla , Humanos , Rituximab/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Estudos Retrospectivos , Anticorpos Monoclonais Murinos , Depleção Linfocítica/métodos , Imunoglobulina G
3.
Expert Rev Clin Immunol ; 19(11): 1315-1324, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554030

RESUMO

INTRODUCTION: Hematopoietic stem cell transplantation is a curative treatment for many inborn errors of immunity (IEI). Incremental improvements and advances in care have led to high rates of >85% survival and cure in many of these diseases. Improvements in HLA-classification and matching have led to increased survival using HLA-matched donors, but survival using T-lymphocyte-depleted mismatched grafts remained significantly worse until fairly recently. Advances in T-lymphocyte depletion methods and graft engineering, although not specific to IEI, have been widely adopted and instrumental in changing the landscape of donor selection, such that a donor should now be possible for every patient. AREAS COVERED: A literature review focusing on T-lymphocyte depletion methodologies and treatment results was performed. The importance of early T-lymphocyte immunoreconstitution to protect against viral infection is reviewed. Two main platforms now dominate the field - immune-magnetic selection of specific cell types and post-transplant chemotherapeutic targeting of rapidly proliferating allo-reactive T-lymphocytes - the emerging literature on these reports, focusing on IEI, is explored, as well as the impact of serotherapy on early immunoreconstitution. EXPERT OPINION: Pharmacokinetic monitoring of serotherapy agents, and use of co-stimulatory molecule blockade are likely to become more widespread. Post-transplant cyclophosphamide or TCR depletion strategies are likely to become the dominant methods of transplantation for nonmalignant diseases.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Viroses , Humanos , Linfócitos T , Transplante de Células-Tronco Hematopoéticas/métodos , Resultado do Tratamento , Depleção Linfocítica/métodos
4.
Methods Mol Biol ; 2559: 31-39, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36180624

RESUMO

Specific cell ablation by the diphtheria toxin (DT) system is widely used to analyze the in vivo function of target cells in mice. In this chapter, we describe the methods of depleting regulatory T cells (Tregs) systemically or selectively in the skin. Since it has been difficult to conclude the importance of tissue-residing Tregs with systemic Treg ablation, we sought to selectively deplete cutaneous Tregs to investigate their function in the skin without the depletion of Tregs in non-target organs. Here, we describe protocols for the depletion of Tregs by the DT system, and subsequent analysis of Tregs in the skin and skin-draining lymph node (dLN) by flow cytometry. This procedure of selective depletion of cutaneous Tregs can be applicable to other tissues and cells, to allow investigation of the role of tissue-resident cells in mice.


Assuntos
Toxina Diftérica , Linfócitos T Reguladores , Animais , Toxina Diftérica/farmacologia , Fatores de Transcrição Forkhead , Imunoterapia , Depleção Linfocítica/métodos , Camundongos , Camundongos Endogâmicos C57BL
5.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35955841

RESUMO

Regulatory T cells (Tregs) are major drivers behind immunosuppressive mechanisms and present a major hurdle for cancer therapy. Tregs are characterized by a high expression of CD25, which is a potentially valuable target for Treg depletion to alleviate immune suppression. The preclinical anti-CD25 (αCD25) antibody, clone PC-61, has met with modest anti-tumor activity due to its capacity to clear Tregs from the circulation and lymph nodes, but not those that reside in the tumor. The optimization of the Fc domain of this antibody clone has been shown to enhance the intratumoral Treg depletion capacity. Here, we generated a stable cell line that produced optimized recombinant Treg-depleting antibodies. A genome engineering strategy in which CRISPR-Cas9 was combined with homology-directed repair (CRISPR-HDR) was utilized to optimize the Fc domain of the hybridoma PC-61 for effector functions by switching it from its original rat IgG1 to a mouse IgG2a isotype. In a syngeneic tumor mouse model, the resulting αCD25-m2a (mouse IgG2a isotype) antibody mediated the effective depletion of tumor-resident Tregs, leading to a high effector T cell (Teff) to Treg ratio. Moreover, a combination of αCD25-m2a and an αPD-L1 treatment augmented tumor eradication in mice, demonstrating the potential for αCD25 as a cancer immunotherapy.


Assuntos
Neoplasias , Linfócitos T Reguladores , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/metabolismo , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Depleção Linfocítica/métodos , Camundongos , Neoplasias/metabolismo , Ratos
6.
Ann Oncol ; 33(9): 916-928, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35690221

RESUMO

BACKGROUND: Anti-CD19 chimeric antigen receptor T-cell immunotherapy (CAR-T) is now a standard treatment of relapsed or refractory B-cell non-Hodgkin lymphomas; however, a significant portion of patients do not respond to CAR-T and/or experience toxicities. Lymphodepleting chemotherapy is a critical component of CAR-T that enhances CAR-T-cell engraftment, expansion, cytotoxicity, and persistence. We hypothesized that the lymphodepletion regimen might affect the safety and efficacy of CAR-T. PATIENTS AND METHODS: We compared the safety and efficacy of lymphodepletion using either fludarabine/cyclophosphamide (n = 42) or bendamustine (n = 90) before tisagenlecleucel in two cohorts of patients with relapsed or refractory large B-cell lymphomas treated consecutively at three academic institutions in the United States (University of Pennsylvania, n = 90; Oregon Health & Science University, n = 35) and Europe (University of Vienna, n = 7). Response was assessed using the Lugano 2014 criteria and toxicities were assessed by the Common Terminology Criteria for Adverse Events (CTCAE) version 5.0 and, when possible, the American Society for Transplantation and Cellular Therapy (ASTCT) consensus grading. RESULTS: Fludarabine/cyclophosphamide led to more profound lymphocytopenia after tisagenlecleucel infusion compared with bendamustine, although the efficacy of tisagenlecleucel was similar between the two groups. We observed significant differences, however, in the frequency and severity of adverse events. In particular, patients treated with bendamustine had lower rates of cytokine release syndrome and neurotoxicity. In addition, higher rates of hematological toxicities were observed in patients receiving fludarabine/cyclophosphamide. Bendamustine-treated patients had higher nadir neutrophil counts, hemoglobin levels, and platelet counts, as well as a shorter time to blood count recovery, and received fewer platelet and red cell transfusions. Fewer episodes of infection, neutropenic fever, and post-infusion hospitalization were observed in the bendamustine cohort compared with patients receiving fludarabine/cyclophosphamide. CONCLUSIONS: Bendamustine for lymphodepletion before tisagenlecleucel has efficacy similar to fludarabine/cyclophosphamide with reduced toxicities, including cytokine release syndrome, neurotoxicity, infectious and hematological toxicities, as well as reduced hospital utilization.


Assuntos
Cloridrato de Bendamustina , Imunoterapia Adotiva , Depleção Linfocítica , Linfoma Difuso de Grandes Células B , Receptores de Antígenos de Linfócitos T , Cloridrato de Bendamustina/efeitos adversos , Cloridrato de Bendamustina/uso terapêutico , Ciclofosfamida/uso terapêutico , Síndrome da Liberação de Citocina/tratamento farmacológico , Humanos , Imunoterapia Adotiva/métodos , Depleção Linfocítica/métodos , Linfoma Difuso de Grandes Células B/terapia , Receptores de Antígenos de Linfócitos T/uso terapêutico
7.
J Hematol Oncol ; 15(1): 4, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35012608

RESUMO

BACKGROUND: There is an urgent need for highly efficacious antiviral therapies in immunosuppressed hosts who develop coronavirus disease (COVID-19), with special concern for those affected by hematological malignancies. CASE PRESENTATION: Here, we report the case of a 75-year-old male with chronic lymphocytic leukemia who was deficient in CD19+CD20+ B-lymphocyte populations due to previous treatment with anti-CD20 monoclonal antibodies. The patient presented with severe COVID-19 pneumonia due to prolonged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and was treated with two courses of the antiviral plitidepsin on a compassionate use basis. The patient subsequently achieved an undetectable viral load, and his pneumonia resolved. CONCLUSIONS: Treatment with plitidepsin was well-tolerated without any further hematological or cardiovascular toxicities. This case further supports plitidepsin as a potential antiviral drug in SARS-CoV-2 patients affected by immune deficiencies and hematological malignancies.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Linfócitos B/efeitos dos fármacos , COVID-19/prevenção & controle , Depsipeptídeos/uso terapêutico , Leucemia Linfocítica Crônica de Células B/complicações , Peptídeos Cíclicos/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Idoso , Anticorpos Monoclonais Humanizados/uso terapêutico , Antígenos CD20/imunologia , Linfócitos B/metabolismo , COVID-19/complicações , COVID-19/virologia , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Depleção Linfocítica/métodos , Masculino , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Resultado do Tratamento
8.
Bone Marrow Transplant ; 57(3): 423-430, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34952929

RESUMO

Hematopoietic stem cell transplantation (HSCT) from haploidentical donors is a viable option for patients lacking HLA-matched donors. Here we report the results of a prospective multicenter phase I/II trial of transplantation of TCRαß and CD19-depleted peripheral blood stem cells from haploidentical family donors after a reduced-intensity conditioning with fludarabine, thiotepa, and melphalan. Thirty pediatric and 30 adult patients with acute leukemia (n = 43), myelodysplastic or myeloproliferative syndrome (n = 6), multiple myeloma (n = 1), solid tumors (n = 6), and non-malignant disorders (n = 4) were enrolled. TCR αß/CD19-depleted grafts prepared decentrally at six manufacturing sites contained a median of 12.1 × 106 CD34+ cells/kg and 14.2 × 103 TCRαß+ T-cells/kg. None of the patients developed grade lll/IV acute graft-versus-host disease (GVHD) and only six patients (10%) had grade II acute GVHD. With a median follow-up of 733 days 36/60 patients are alive. The cumulative incidence of non-relapse mortality at day 100, 1 and 2 years after HSCT was 5%, 15%, and 17% for all patients, respectively. Estimated probabilities of overall and disease-free survival at 2 years were 63% and 50%, respectively. Based on these promising results in a high-risk patient cohort, haploidentical HSCT using TCRαß/CD19-depleted grafts represents a viable treatment option.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Adulto , Antígenos CD19 , Criança , Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Leucemia Mieloide Aguda/complicações , Leucemia Mieloide Aguda/terapia , Depleção Linfocítica/métodos , Estudos Prospectivos , Receptores de Antígenos de Linfócitos T alfa-beta , Condicionamento Pré-Transplante/métodos
9.
Bull Cancer ; 108(10S): S28-S39, 2021 Oct.
Artigo em Francês | MEDLINE | ID: mdl-34920805

RESUMO

Three CD19 CAR-T cells (Yescarta®, Kymriah® and Breyanzi®), have been approved in relapsed or refractory diffuse large B cell lymphomas (DLBCL) after at least two previous lines of therapy. These immunotherapies have transformed the prognosis of these lymphomas, which can't be cured by conventional treatments. Long-term updates of registration studies as well as the first real-life data allow a better knowledge of the efficacy of these emerging therapies, their toxicity and their resistance mechanisms. These advances have also led to consider the earlier use of CAR-T cells in the therapeutic strategy and to extend it to other B lymphomas such as mantle cell and indolent lymphomas. Indeed, Yescarta® and Tecartus® have been recently approved in those malignancies, Furthermore, other strategies are being investigated to develop new CAR-T cells to target Hodgkin's lymphomas and T-cell lymphomas, although data in these settings still have to be completed. In this article, we review the latest data on the use of CAR-T cells in lymphomas.


Assuntos
Imunoterapia Adotiva/métodos , Linfoma/terapia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/transplante , Antígenos CD19/imunologia , Antineoplásicos Imunológicos/uso terapêutico , Produtos Biológicos/efeitos adversos , Produtos Biológicos/uso terapêutico , Doença de Hodgkin/imunologia , Doença de Hodgkin/terapia , Humanos , Imunoterapia Adotiva/efeitos adversos , Depleção Linfocítica/métodos , Linfoma/imunologia , Linfoma Folicular/imunologia , Linfoma Folicular/terapia , Linfoma Difuso de Grandes Células B/terapia , Linfoma de Célula do Manto/imunologia , Linfoma de Célula do Manto/terapia , Linfoma não Hodgkin/imunologia , Linfoma não Hodgkin/terapia , Linfoma de Células T Periférico/imunologia , Linfoma de Células T Periférico/terapia , Receptores de Antígenos de Linfócitos T/uso terapêutico , Linfócitos T/imunologia
10.
Bull Cancer ; 108(10S): S4-S17, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34920806

RESUMO

Chimeric antigen receptors (CAR)-T cells are genetically engineered T-lymphocytes redirected with a predefined specificity to any target antigen, in a non-HLA restricted manner, therefore combining antibody-type specificity with effector T-cell function. This strategy was developed some thirty years ago, after extensive work established the key role of the immune system against cancer. The first-engineered T-cell with chimeric molecule was designed in 1993 by Israeli immunologist Zelig Eshhar. Since then, several modifications took place, including the addition of co-stimulatory domain, to further improve CAR-T cell anti-tumor potency. The first clinical application of CAR-T cell was done in Rotterdam in 2005 for metastatic renal cell carcinoma and simultaneously at the National Cancer Institute (NCI) for metastatic ovarian cancer. These pioneered studies failed to demonstrate a therapeutic benefit, but warning emerged concerning their safety of use. The real clinical success came with anti-CD19 CAR-T cells, used since 2009 by Steven Rosenberg at the NCI in a patient with refractory follicular lymphoma and in 2011 by Carl June and David Porter from the University of Pennsylvania in patients with chronic lymphocytic leukemia and B-cell acute lymphoblastic leukemia. From that time, large centers in North America have embarked in several early phase and pivotal trials that have demonstrated unprecedent response rate in heavily pretreated chemo refractory patient with B-cell malignancies. Theses clinical success have led to the approval of three anti-CD19 CAR-T cells products for the management of B-cell malignancies in the United States and in Europe as of December 2020.


Assuntos
Imunoterapia Adotiva/métodos , Neoplasias/terapia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/transplante , Especificidade de Anticorpos , Antígenos CD19/imunologia , Carcinoma de Células Renais/secundário , Carcinoma de Células Renais/terapia , Ensaios Clínicos como Assunto , Europa (Continente) , Feminino , História do Século XVIII , História do Século XIX , História do Século XX , Humanos , Imunoterapia Adotiva/história , Israel , Neoplasias Renais/patologia , Neoplasias Renais/terapia , Leucemia Linfocítica Crônica de Células B/terapia , Depleção Linfocítica/métodos , Linfócitos do Interstício Tumoral/transplante , Linfoma Folicular/terapia , Mieloma Múltiplo/terapia , Neoplasias/imunologia , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Linfócitos T/imunologia , Estados Unidos
11.
Int Immunopharmacol ; 99: 108078, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34426116

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease epitomized by severe inflammation that induces tendon, cartilage, and bone damage over time. Although different types of cells undertake pathogenic functions in RA, the B cell's significant involvement has increasingly been known following the development of rheumatoid factor and it has been re-emphasized in recent years. Therefore, the rheumatoid factors and anti-cyclic citrullinated peptide antibodies are well-known indications of infection and clinical manifestations, and that they can precede the development of illness by several years. The emergence of rituximab a B cell reducing chimeric antidote in 1997 and 1998 transformed B-cell-targeted therapy for inflammatory disorder from a research hypothesis to a functional fact. Ever since, several autoantibody-related conditions were addressed, including the more intriguing indications of effectiveness seen in rheumatoid arthritis patients. Numerous types of B-cell-targeted compounds are currently being researched. From the beginning, one of the primary goals of B-cell therapy was to reinstate some kind of immune tolerance. While B cells have long been recognized as essential autoantibody producers, certain antibody-independent functions and usefulness as a key targeted therapy were not recognized until recently. The knowledge of B cells' diverse physical and pathogenic roles in autoimmune diseases is growing. As a result, the number of successful agents targeting the B cell complex is becoming more ubiquitous. Therefore, in this article, we explore fresh perspectives upon the roles of B cells in arthritis treatment, as well as new evidence regarding the effectiveness of B lymphocytes reduction and the therapeutic outcome of biological markers.


Assuntos
Artrite Reumatoide/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Animais , Artrite Reumatoide/tratamento farmacológico , Autoanticorpos/imunologia , Linfócitos B/efeitos dos fármacos , Diferenciação Celular/imunologia , Humanos , Depleção Linfocítica/métodos
12.
J Neuroimmunol ; 359: 577676, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34364105

RESUMO

B cell depletion therapy has been shown to be beneficial in multiple sclerosis (MS). However, the mechanism by which B cell depletion mediates its beneficial effects in MS is still unclear. To better understand how B cell depletion may benefit patients with a disease previously thought to be primarily mediated by CD4 T cells, immune profiles were monitored in 48 patients in a phase II trial of ublituximab, a glycoengineered CD20 monoclonal antibody, at 18 time points over a year. As we previously described there was a significant shift in the percentages of T cells, NK cells, and myeloid cells following the initial dose of ublituximab, but this shift normalized within a week and these populations remained stable for the duration of the study. However, T cell subsets changed with an increase in the percentage of naïve CD4 and CD8 T cells and a decline in memory T cells. Importantly, the percentage of Th1 and CD4+GM-CSF+ T cells decreased, while the percentage of Tregs continued to increase over the year. Ublituximab not only depleted CD20+ B cells, but also CD20+ T cells. The favorable changes in the T cell subsets may contribute to the beneficial effects of B cell depletion therapy.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Linfócitos B/metabolismo , Células Matadoras Naturais/metabolismo , Depleção Linfocítica/métodos , Esclerose Múltipla Recidivante-Remitente/sangue , Linfócitos T/metabolismo , Anticorpos Monoclonais/farmacologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/imunologia , Relatório de Pesquisa , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
13.
Stem Cell Reports ; 16(8): 1999-2013, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34242616

RESUMO

Hematopoietic stem cell transplantation (HSCT) is a frequent therapeutic approach to restore hematopoiesis in patients with hematologic diseases. Patients receive a hematopoietic stem cell (HSC)-enriched donor cell infusion also containing immune cells, which may have a beneficial effect by eliminating residual neoplastic cells. However, the effect that donor innate immune cells may have on the donor HSCs has not been deeply explored. Here, we evaluate the influence of donor natural killer (NK) cells on HSC fate, concluded that NK cells negatively affect HSC frequency and function, and identified interferon-gamma (IFNγ) as a potential mediator. Interestingly, improved HSC fitness was achieved by NK cell depletion from murine and human donor infusions or by blocking IFNγ activity. Thus, our data suggest that suppression of inflammatory signals generated by donor innate immune cells can enhance engraftment and hematopoietic reconstitution during HSCT, which is particularly critical when limited HSC numbers are available and the risk of engraftment failure is high.


Assuntos
Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/imunologia , Interferon gama/imunologia , Células Matadoras Naturais/imunologia , Doadores de Tecidos , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/imunologia , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Células Cultivadas , Técnicas de Cocultura , Perfilação da Expressão Gênica/métodos , Sobrevivência de Enxerto/genética , Sobrevivência de Enxerto/imunologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Células Matadoras Naturais/metabolismo , Depleção Linfocítica/métodos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Camundongos Transgênicos
14.
J Neuroimmunol ; 358: 577666, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34298341

RESUMO

Rituximab (a B-cell depleting monoclonal antibody) is increasingly utilized for treatment of different immune-mediated neurologic disorders, including aquaporin-4-IgG-positive neuromyelitis optica spectrum disorder (AQP4-IgG-NMOSD). After an initial treatment course, the drug is generally reinfused when peripheral blood B-cells levels re-increase >1% (usually after 6-12 months), or at fixed pre-planned 6-month intervals. We describe the unusual case of a 40-year-old woman with AQP4-IgG-NMOSD who showed a prolonged B-cell depletion for nearly five years after a single rituximab reinfusion. In similar rare patients with exceptionally long-lasting B-cell depletion, rituximab reinfusions at fixed pre-planned intervals would result in unnecessary treatment-related risks and health-care expenses.


Assuntos
Aquaporina 4 , Linfócitos B/efeitos dos fármacos , Imunoglobulina G , Depleção Linfocítica/métodos , Neuromielite Óptica/tratamento farmacológico , Rituximab/administração & dosagem , Adulto , Aquaporina 4/sangue , Linfócitos B/metabolismo , Feminino , Humanos , Imunoglobulina G/sangue , Fatores Imunológicos/administração & dosagem , Pessoa de Meia-Idade , Neuromielite Óptica/sangue
15.
mBio ; 12(4): e0150321, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34311582

RESUMO

Severe coronavirus disease 2019 (COVID-19) has been associated with T cell lymphopenia, but no causal effect of T cell deficiency on disease severity has been established. To investigate the specific role of T cells in recovery from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, we studied rhesus macaques that were depleted of either CD4+, CD8+, or both T cell subsets prior to infection. Peak virus loads were similar in all groups, but the resolution of virus in the T cell-depleted animals was slightly delayed compared to that in controls. The T cell-depleted groups developed virus-neutralizing antibody responses and class switched to IgG. When reinfected 6 weeks later, the T cell-depleted animals showed anamnestic immune responses characterized by rapid induction of high-titer virus-neutralizing antibodies, faster control of virus loads, and reduced clinical signs. These results indicate that while T cells play a role in the recovery of rhesus macaques from acute SARS-CoV-2 infections, their depletion does not induce severe disease, and T cells do not account for the natural resistance of rhesus macaques to severe COVID-19. Neither primed CD4+ nor CD8+ T cells appeared critical for immunoglobulin class switching, the development of immunological memory, or protection from a second infection. IMPORTANCE Patients with severe COVID-19 often have decreased numbers of T cells, a cell type important in fighting most viral infections. However, it is not known whether the loss of T cells contributes to severe COVID-19 or is a consequence of it. We studied rhesus macaques, which develop only mild COVID-19, similar to most humans. Experimental depletion of T cells slightly prolonged their clearance of virus, but there was no increase in disease severity. Furthermore, they were able to develop protection from a second infection and produced antibodies capable of neutralizing the virus. They also developed immunological memory, which allows a much stronger and more rapid response upon a second infection. These results suggest that T cells are not critical for recovery from acute SARS-CoV-2 infections in this model and point toward B cell responses and antibodies as the essential mediators of protection from re-exposure.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/patologia , Memória Imunológica/imunologia , Linfopenia/imunologia , SARS-CoV-2/imunologia , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Feminino , Depleção Linfocítica/métodos , Macaca mulatta/imunologia , Masculino
16.
Arthritis Rheumatol ; 73(11): 2086-2095, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33955200

RESUMO

OBJECTIVE: We undertook this study to investigate the effect of B cell depletion on fibrosis in systemic sclerosis (SSc) and its mechanism of action. METHODS: Mice with bleomycin-induced SSc (BLM-SSc) were treated with anti-CD20 antibody, and skin and lung fibrosis were histopathologically evaluated. T cells and macrophages were cocultured with B cells, and the effect of B cells on their differentiation was assessed by flow cytometry. We also cocultured B cells and monocytes from SSc patients and analyzed the correlation between fibrosis and profibrotic macrophage induction by B cells. RESULTS: B cell depletion inhibited fibrosis in mice with BLM-SSc. B cells from mice with BLM-SSc increased proinflammatory cytokine-producing T cells in coculture. In mice with BLM-SSc, B cell depletion before BLM treatment (pre-depletion) inhibited fibrosis more strongly than B cell depletion after BLM treatment (post-depletion) (P < 0.01). However, the frequencies of proinflammatory T cells were lower in the post-depletion group than in the pre-depletion group. This discrepancy suggests that the effect of B cell depletion on fibrosis cannot be explained by its effect on T cell differentiation. On the other hand, profibrotic macrophages were markedly decreased in the pre-depletion group compared to the post-depletion group (P < 0.05). Furthermore, B cells from mice with BLM-SSc increased profibrotic macrophage differentiation in coculture (P < 0.05). In SSc patients, the extent of profibrotic macrophage induction by B cells correlated with the severity of fibrosis (P < 0.0005). CONCLUSION: These findings suggest that B cell depletion inhibits tissue fibrosis via suppression of profibrotic macrophage differentiation in mice with BLM-SSc, providing a new rationale for B cell depletion therapy in SSc.


Assuntos
Linfócitos B/patologia , Diferenciação Celular/fisiologia , Depleção Linfocítica/métodos , Macrófagos/patologia , Fibrose Pulmonar/terapia , Escleroderma Sistêmico/terapia , Animais , Bleomicina , Modelos Animais de Doenças , Camundongos , Fibrose Pulmonar/induzido quimicamente , Escleroderma Sistêmico/induzido quimicamente , Escleroderma Sistêmico/patologia , Pele/patologia
17.
Mol Cancer Res ; 19(6): 1076-1084, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33674442

RESUMO

Immune checkpoint blockade (ICB) has improved cancer care, but ICB is only effective in some patients. The molecular mechanisms that influence ICB therapy response are not completely understood. The non-classical MHC class I molecule HLA-E and its mouse ortholog, Qa-1b, present a limited set of peptides in a TAP1-dependent manner to the NKG2A/CD94 heterodimer to transduce an inhibitory signal to natural killer (NK) and CD8+ T cells. However, deficiency of TAP1 allows Qa-1b to present an alternative peptidome to Qa-1b-restricted T-cell receptors of cytotoxic T cells. In this study, we used CRISPR-Cas9 to study the relationship between TAP1, Qa-1b, and response to anti-PD1 therapy. We hypothesized that immunotherapy response in TAP1-deficient tumors would be influenced by Qa-1b. Strikingly, using a syngeneic orthotopic mouse model, we found that although TAP1-deficient tumors were resistant to anti-PD1 treatment, anti-PD1 response was significantly enhanced in tumors lacking both TAP1 and Qa-1b. This increased sensitivity is partially dependent on NK cells. TAP1-deficient tumors were associated with an increase of intratumoral regulatory T cells (Treg) and neutrophils, whereas tumors lacking both TAP1 and Qa-1b exhibited an increased CD8+ T-cell to Treg ratio. These data suggest that direct inhibition of Qa-1b may alter the immune microenvironment to reverse resistance to anti-PD1 therapy, particularly in the context of antigen-processing defects. IMPLICATIONS: This study reveals important functional crosstalk between classical TAP-dependent MHC complexes and Qa-1b/HLA-E, particularly in tumors with impaired antigen-processing machinery. This can dramatically influence immunotherapy efficacy.


Assuntos
Apresentação de Antígeno/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe I/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/terapia , Microambiente Tumoral/efeitos dos fármacos , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/imunologia , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Linhagem Celular Tumoral , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Técnicas de Inativação de Genes , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Depleção Linfocítica/métodos , Camundongos Endogâmicos C57BL , Neoplasias/genética , Neoplasias/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Carga Tumoral/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
18.
Pediatr Transplant ; 25(4): e14009, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33755277

RESUMO

FA is the most common cause of inherited BMF syndromes. The only cure for BMF in FA remains HSCT. Due to DNA instability in FA, RIC has been used to decrease immediate and late complications of HSCT. Most FA conditioning regimens in mismatched and unrelated donor transplants rely on TBI, which increases the risk of secondary malignancies. Most of the non-TBI conditioning regimens use an ex vivo T-cell depletion approach, but this is not feasible at all pediatric stem cell transplant programs. To evaluate the success of HSCT in patients with FA using non-TBI conditioning regimens with in vivo T-cell depletion approach. HSCT using non-TBI based conditioning was performed on two siblings with FA. The first sibling underwent matched unrelated donor transplant with a BM graft using fludarabine, alemtuzumab, busulfan, and cyclophosphamide conditioning and cyclosporine and mycophenolate as GVHD prophylaxis. The second sibling underwent MSD transplant with UCB and BM grafts using similar approach, but without busulfan and mycophenolate. Both siblings had engraftment without signs of acute or chronic GVHD. Acute post-transplant complications included brief viral reactivations. At last follow-up, both siblings continued to have full immune reconstitution with stable chimerism. Conditioning regimens without radiation and inclusion of alemtuzumab can lead to successful engraftment without development of GVHD and reduce risk of developing secondary neoplasms, even with unrelated donor transplants.


Assuntos
Transplante de Medula Óssea , Anemia de Fanconi/terapia , Depleção Linfocítica/métodos , Agonistas Mieloablativos/uso terapêutico , Condicionamento Pré-Transplante/métodos , Vidarabina/análogos & derivados , Criança , Quimioterapia Combinada , Anemia de Fanconi/imunologia , Humanos , Irmãos , Linfócitos T/imunologia , Vidarabina/uso terapêutico
19.
Int J Radiat Oncol Biol Phys ; 110(5): 1341-1349, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33647370

RESUMO

Outcomes for triple negative breast cancer (TNBC) are poor and may be improved by increasing CD8+ tumor infiltrating lymphocytes (TIL) to augment antitumor immunity. Radiation (RT) can promote immunogenic cell death with increased antitumor T cell activity but also stimulates suppressive regulatory T cells (Tregs). Because metabolic alterations affect immune homeostasis and prior studies show caloric restriction (CR) combined with RT improves preclinical TNBC outcomes, we hypothesized that CR augments RT, in part, by altering intratumoral immunity. Using an in vivo model of TNBC, we treated mice with ad libitum (AL) diet, radiation, a CR diet, or CR + RT, and demonstrated an immune suppressive environment with a significant increase in CD4+ CD25+Foxp3+ Tregs after RT but not in CR-fed mice. CD8:Treg ratio in CR + RT TIL increased 4-fold compared with AL + RT mice. In vivo CD8 depletion was performed to assess the role of effector T cells in mitigating the effects of CR, and it was found that in mice undergoing CR, depletion of CD8 T cells resulted in increased tumor progression and decreased median survival compared with isotype control-treated mice. In addition, PD-1 expression on CD3+CD8+ T cells within the tumor microenvironment was significantly increased in CR + RT versus AL + RT treated mice as per immunofluorescence. Serum from breast cancer patients undergoing RT alone or CR and RT was collected pre- and postintervention, and a cytokine array demonstrated that patients treated with CR + RT had notable decreases in immunosuppressive cytokines such as IL-2Rγ, IL-10Rß, and TGF-ß2 and 3 compared with patients receiving RT alone. In conclusion, combining CR with RT decreases intratumoral Tregs, increases CD8:Treg, and increases PD-1 expression via a process dependent on CD8 T cells in a TNBC model. Breast cancer patients undergoing CR concurrently with RT also had significant reduction in immunosuppressive cytokine levels compared with those receiving RT alone.


Assuntos
Restrição Calórica , Linfócitos do Interstício Tumoral/efeitos da radiação , Linfócitos T Reguladores/efeitos da radiação , Neoplasias de Mama Triplo Negativas/radioterapia , Microambiente Tumoral/efeitos da radiação , Adulto , Idoso , Animais , Linfócitos T CD4-Positivos/química , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/efeitos da radiação , Linfócitos T CD8-Positivos/química , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/efeitos da radiação , Terapia Combinada/métodos , Progressão da Doença , Feminino , Citometria de Fluxo , Fatores de Transcrição Forkhead , Humanos , Subunidade gama Comum de Receptores de Interleucina/sangue , Subunidade beta de Receptor de Interleucina-10/sangue , Subunidade alfa de Receptor de Interleucina-2 , Depleção Linfocítica/métodos , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/metabolismo , Distribuição Aleatória , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta2/sangue , Fator de Crescimento Transformador beta3/sangue , Neoplasias de Mama Triplo Negativas/sangue , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/mortalidade , Microambiente Tumoral/imunologia
20.
Leukemia ; 35(9): 2602-2615, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33597728

RESUMO

Elimination of suppressive T cells may enable and enhance cancer immunotherapy. Here, we demonstrate that the cell membrane protein SLAMF7 was highly expressed on immunosuppressive CD8+CD28-CD57+ Tregs in multiple myeloma (MM). SLAMF7 expression associated with T cell exhaustion surface markers and exhaustion-related transcription factor signatures. T cells from patients with a high frequency of SLAMF7+CD8+ T cells exhibited decreased immunoreactivity towards the MART-1aa26-35*A27L antigen. A monoclonal anti-SLAMF7 antibody (elotuzumab) specifically depleted SLAMF7+CD8+ T cells in vitro and in vivo via macrophage-mediated antibody-dependent cellular phagocytosis (ADCP). Anti-SLAMF7 treatment of MM patients depleted suppressive T cells in peripheral blood. These data highlight SLAMF7 as a marker for suppressive CD8+ Treg and suggest that anti-SLAMF7 antibodies can be used to boost anti-tumoral immune responses in cancer patients.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Depleção Linfocítica/métodos , Mieloma Múltiplo/imunologia , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Adulto , Idoso , Animais , Antineoplásicos/uso terapêutico , Apoptose , Proliferação de Células , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Mieloma Múltiplo/patologia , Mieloma Múltiplo/terapia , Prognóstico , Família de Moléculas de Sinalização da Ativação Linfocitária/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...